Feynmind的数学课堂-第一课

(练习2全做,练习3除最后三个)

集合之间的简单运算

首先我们假设集合$A$和$B$都是某个集合$M$的子集。

集合的并

$A\cup B := {x\in M|(x\in A)\lor (x\in B)}$

集合的交

$A\cap B:={x\in M|(x\in A)\land (x\in B)}$

集合的差

$A$ \ $B$ := ${x\in M |(x\in A)\land (x\notin B)}$

$A$ - $B$ := ${x\in M |(x\in A)\land (x\notin B)}$

补集

集合$M$与它的子集$A$的差集通常叫做A在$M$中的补集,记作$C_MA$,也可以简单记作$\overline A$

德摩根定律

  • $\overline{A\cup B} = \overline A \cap \overline B $

    证明:

    $\begin{array}{ll}
    x\in \overline{(A\cup B)} & \rightarrow x\notin A\cup B \
    & \rightarrow ((x\notin A)\land (x\notin B)) \
    & \rightarrow ((x\in \overline A) \land (x\in \overline B)) \
    & \rightarrow (x \in \overline A \cap \overline B)
    \end{array} $

    此时得到结论:$x\in \overline{(A\cup B)} \rightarrow (x \in \overline A \cap \overline B)$

    刚好符合$A\subset B$的定义 := $(x \in A) \rightarrow (x \in B)$

    所以:$\overline{A\cup B} \subset (\overline A \cap \overline B)$
    我们同样可以这样推理:

    $\begin{array}{ll}
    (x\in (\overline A \cap \overline B)) & \rightarrow ((x\in \overline A) \land (x\in \overline B)) \
    & \rightarrow ((x\notin A) \land (x\notin B)) \
    & \rightarrow (x\notin A \cup B) \
    & \rightarrow (x\in \overline{A\cup B})
    \end{array}$

    即,$x\in (\overline A \cap \overline B) \rightarrow (x\in \overline{A\cup B})$,根据集合定义可得出$\overline A \cap \overline B \subset x\in \overline{A\cup B}$

    所以:$\overline{A\cup B} = \overline A \cap \overline B $


  • $\overline{A\cap B} = \overline A \cup \overline B$

    证明:

    $\begin{array}{ll}
    x\in \overline{A\cap B} & \rightarrow x \notin (A \cap B) \
    & \rightarrow (x \notin A) \lor (x\notin B) \
    & \rightarrow (x \in \overline A) \lor (x \in \overline B) \
    & \rightarrow x \in \overline A\cap \overline B \
    x\in \overline{A\cap B} & \subset x \in \overline A\cap \overline B \
    \text{同时:} \
    x \in \overline A\cap \overline B & \rightarrow ((x \in \overline A) \lor x\in \overline B) \
    & \rightarrow ((x \notin A) \lor (x \notin B)) \
    & \rightarrow x \notin A \cap B \
    & \rightarrow x \in \overline{A\cap B}\
    \overline A\cap \overline B \subset \overline{A\cap B}\
    \end{array}$

    所以:$\overline{A\cap B} = \overline A \cup \overline B$

课后作业

练习二

假设$A\subset M,B\subset M,C\subset M$

  1. 验证下面的关系式:

    (1) $(A\subset C) \land (B\subset C) \iff ((A\cup B)\subset C)$

    $A\subset C,B\subset C \rightarrow (A\cup B) \subset C$

$\begin{array}{ll}
((A\cup B)\subset C) &\rightarrow (x\in (A\cup B) \land x\in C) \
& \rightarrow ((x\in A \lor x\in B) \land x\in C ) \
& \rightarrow (x\in A \land x\in C) \lor (x\in B \land x\in C) \
& \rightarrow (x\in A\cap C) \lor x\in(B\cap C) \
& \rightarrow (x\in (A\cap C)\cup(B\cap C)) \
& \rightarrow ((A\cap C)\cup(B\cap C))\
& \rightarrow (A\cup B)\cap C
\end{array}$

(2) $(C\subset A) \land (C\subset B) \iff (C\subset (A\cap B))$

(3)

(4)$(A\subset \overline B) \iff (B\subset \overline A)$

(5)$(A\subset B) \iff (\overline B \subset \overline A )$

2. 试证明:

(1)$A\cup (B\cup C) = (A \cup B)\cup C$

(2)$A\cap (B\cap C) = (A\cap B)\cap C$

(3)$A\cap (B\cup C) = (A\cap B) \cup (A\cap C)$

(4)$A\cup(B\cap C) = (A \cup B) \cap (A\cup C)$

  1. 验证并与交的对偶关系

    (1)$\overline{A\cup B} = \overline A \cap \overline B$

    证明:

    $\begin{array}{ll}
    x\in \overline{(A\cup B)} & \rightarrow x\notin A\cup B \
    & \rightarrow ((x\notin A)\land (x\notin B)) \
    & \rightarrow ((x\in \overline A) \land (x\in \overline B)) \
    & \rightarrow (x \in \overline A \cap \overline B)
    \end{array} $

    此时得到结论:$x\in \overline{(A\cup B)} \rightarrow (x \in \overline A \cap \overline B)$

    刚好符合$A\subset B$的定义 := $(x \in A) \rightarrow (x \in B)$

    所以:$\overline{A\cup B} \subset (\overline A \cap \overline B)$
    我们同样可以这样推理:

    $\begin{array}{ll}
    (x\in (\overline A \cap \overline B)) & \rightarrow ((x\in \overline A) \land (x\in \overline B)) \
    & \rightarrow ((x\notin A) \land (x\notin B)) \
    & \rightarrow (x\notin A \cup B) \
    & \rightarrow (x\in \overline{A\cup B})
    \end{array}$

    即,$x\in (\overline A \cap \overline B) \rightarrow (x\in \overline{A\cup B})$,根据集合定义可得出$\overline A \cap \overline B \subset x\in \overline{A\cup B}$

    所以:$\overline{A\cup B} = \overline A \cap \overline B $

(2)$\overline{A\cap B} = \overline A \cup \overline B$

证明:

$\begin{array}{ll}
x\in \overline{A\cap B} & \rightarrow x \notin (A \cap B) \
& \rightarrow (x \notin A) \lor (x\notin B) \
& \rightarrow (x \in \overline A) \lor (x \in \overline B) \
& \rightarrow x \in \overline A\cap \overline B \
x\in \overline{A\cap B} & \subset x \in \overline A\cap \overline B \
\text{同时:} \
x \in \overline A\cap \overline B & \rightarrow ((x \in \overline A) \lor x\in \overline B) \
& \rightarrow ((x \notin A) \lor (x \notin B)) \
& \rightarrow x \notin A \cap B \
& \rightarrow x \in \overline{A\cap B}\
\overline A\cap \overline B \subset \overline{A\cap B}\
\end{array}$

所以:$\overline{A\cap B} = \overline A \cup \overline B$

  1. 试证明:

    (1)$X\times Y=\emptyset \iff (X=\emptyset) \land (Y = \emptyset)$

    (2)$X\times Y \ne \emptyset ,(A\times B\subset X\times Y \iff (A \subset X)\land (B\subset Y))$

    (3)$X\times Y \ne \emptyset ,(X\times Y)\cup (Z\times Y) = (X\cup Z)\times Y$

    (4)$X\times Y \ne \emptyset ,(X\times Y)\cap (X’\times Y’)\times(Y\times Y’)$